Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lack of tRNA modification isopentenyl-A37 alters mRNA decoding and causes metabolic deficiencies in fission yeast.

Identifieur interne : 001022 ( Main/Exploration ); précédent : 001021; suivant : 001023

Lack of tRNA modification isopentenyl-A37 alters mRNA decoding and causes metabolic deficiencies in fission yeast.

Auteurs : Tek N. Lamichhane [États-Unis] ; Nathan H. Blewett ; Amanda K. Crawford ; Vera A. Cherkasova ; James R. Iben ; Thomas J. Begley ; Philip J. Farabaugh ; Richard J. Maraia

Source :

RBID : pubmed:23716598

Descripteurs français

English descriptors

Abstract

tRNA isopentenyltransferases (Tit1) modify tRNA position 37, adjacent to the anticodon, to N6-isopentenyladenosine (i6A37) in all cells, yet the tRNA subsets selected for modification vary among species, and their relevance to phenotypes is unknown. We examined the function of i6A37 in Schizosaccharomyces pombe tit1+ and tit1-Δ cells by using a β-galactosidase codon-swap reporter whose catalytic activity is sensitive to accurate decoding of codon 503. i6A37 increased the activity of tRNACys at a cognate codon and that of tRNATyr at a near-cognate codon, suggesting that i6A37 promotes decoding activity generally and increases fidelity at cognate codons while decreasing fidelity at noncognate codons. S. pombe cells lacking tit1+ exhibit slow growth in glycerol or rapamycin. While existing data link wobble base U34 modifications to translation of functionally related mRNAs, whether this might extend to the anticodon-adjacent position 37 was unknown. Indeed, we found a biased presence of i6A37-cognate codons in high-abundance mRNAs for ribosome subunits and energy metabolism, congruent with the observed phenotypes and the idea that i6A37 promotes translational efficiency. Polysome profiles confirmed the decreased translational efficiency of mRNAs in tit1-Δ cells. Because subsets of i6A37-tRNAs differ among species, as do their cognate codon-sensitive mRNAs, these genomic variables may underlie associated phenotypic differences.

DOI: 10.1128/MCB.00278-13
PubMed: 23716598
PubMed Central: PMC3719670


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lack of tRNA modification isopentenyl-A37 alters mRNA decoding and causes metabolic deficiencies in fission yeast.</title>
<author>
<name sortKey="Lamichhane, Tek N" sort="Lamichhane, Tek N" uniqKey="Lamichhane T" first="Tek N" last="Lamichhane">Tek N. Lamichhane</name>
<affiliation wicri:level="2">
<nlm:affiliation>Intramural Research Program, NICHD, NIH, Bethesda, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Intramural Research Program, NICHD, NIH, Bethesda, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Blewett, Nathan H" sort="Blewett, Nathan H" uniqKey="Blewett N" first="Nathan H" last="Blewett">Nathan H. Blewett</name>
</author>
<author>
<name sortKey="Crawford, Amanda K" sort="Crawford, Amanda K" uniqKey="Crawford A" first="Amanda K" last="Crawford">Amanda K. Crawford</name>
</author>
<author>
<name sortKey="Cherkasova, Vera A" sort="Cherkasova, Vera A" uniqKey="Cherkasova V" first="Vera A" last="Cherkasova">Vera A. Cherkasova</name>
</author>
<author>
<name sortKey="Iben, James R" sort="Iben, James R" uniqKey="Iben J" first="James R" last="Iben">James R. Iben</name>
</author>
<author>
<name sortKey="Begley, Thomas J" sort="Begley, Thomas J" uniqKey="Begley T" first="Thomas J" last="Begley">Thomas J. Begley</name>
</author>
<author>
<name sortKey="Farabaugh, Philip J" sort="Farabaugh, Philip J" uniqKey="Farabaugh P" first="Philip J" last="Farabaugh">Philip J. Farabaugh</name>
</author>
<author>
<name sortKey="Maraia, Richard J" sort="Maraia, Richard J" uniqKey="Maraia R" first="Richard J" last="Maraia">Richard J. Maraia</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23716598</idno>
<idno type="pmid">23716598</idno>
<idno type="doi">10.1128/MCB.00278-13</idno>
<idno type="pmc">PMC3719670</idno>
<idno type="wicri:Area/Main/Corpus">001017</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001017</idno>
<idno type="wicri:Area/Main/Curation">001017</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001017</idno>
<idno type="wicri:Area/Main/Exploration">001017</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Lack of tRNA modification isopentenyl-A37 alters mRNA decoding and causes metabolic deficiencies in fission yeast.</title>
<author>
<name sortKey="Lamichhane, Tek N" sort="Lamichhane, Tek N" uniqKey="Lamichhane T" first="Tek N" last="Lamichhane">Tek N. Lamichhane</name>
<affiliation wicri:level="2">
<nlm:affiliation>Intramural Research Program, NICHD, NIH, Bethesda, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Intramural Research Program, NICHD, NIH, Bethesda, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Blewett, Nathan H" sort="Blewett, Nathan H" uniqKey="Blewett N" first="Nathan H" last="Blewett">Nathan H. Blewett</name>
</author>
<author>
<name sortKey="Crawford, Amanda K" sort="Crawford, Amanda K" uniqKey="Crawford A" first="Amanda K" last="Crawford">Amanda K. Crawford</name>
</author>
<author>
<name sortKey="Cherkasova, Vera A" sort="Cherkasova, Vera A" uniqKey="Cherkasova V" first="Vera A" last="Cherkasova">Vera A. Cherkasova</name>
</author>
<author>
<name sortKey="Iben, James R" sort="Iben, James R" uniqKey="Iben J" first="James R" last="Iben">James R. Iben</name>
</author>
<author>
<name sortKey="Begley, Thomas J" sort="Begley, Thomas J" uniqKey="Begley T" first="Thomas J" last="Begley">Thomas J. Begley</name>
</author>
<author>
<name sortKey="Farabaugh, Philip J" sort="Farabaugh, Philip J" uniqKey="Farabaugh P" first="Philip J" last="Farabaugh">Philip J. Farabaugh</name>
</author>
<author>
<name sortKey="Maraia, Richard J" sort="Maraia, Richard J" uniqKey="Maraia R" first="Richard J" last="Maraia">Richard J. Maraia</name>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="eISSN">1098-5549</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alkyl and Aryl Transferases (genetics)</term>
<term>Alkyl and Aryl Transferases (metabolism)</term>
<term>Codon (genetics)</term>
<term>Codon (metabolism)</term>
<term>Gene Deletion (MeSH)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Isopentenyladenosine (genetics)</term>
<term>Isopentenyladenosine (metabolism)</term>
<term>Protein Biosynthesis (MeSH)</term>
<term>RNA, Fungal (genetics)</term>
<term>RNA, Fungal (metabolism)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>RNA, Transfer (genetics)</term>
<term>RNA, Transfer (metabolism)</term>
<term>Schizosaccharomyces (enzymology)</term>
<term>Schizosaccharomyces (genetics)</term>
<term>Schizosaccharomyces (growth & development)</term>
<term>Schizosaccharomyces (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN de transfert (génétique)</term>
<term>ARN de transfert (métabolisme)</term>
<term>ARN fongique (génétique)</term>
<term>ARN fongique (métabolisme)</term>
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Alkyl et aryl transferases (génétique)</term>
<term>Alkyl et aryl transferases (métabolisme)</term>
<term>Biosynthèse des protéines (MeSH)</term>
<term>Codon (génétique)</term>
<term>Codon (métabolisme)</term>
<term>Délétion de gène (MeSH)</term>
<term>Isopentényladénosine (génétique)</term>
<term>Isopentényladénosine (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Schizosaccharomyces (croissance et développement)</term>
<term>Schizosaccharomyces (enzymologie)</term>
<term>Schizosaccharomyces (génétique)</term>
<term>Schizosaccharomyces (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Alkyl and Aryl Transferases</term>
<term>Codon</term>
<term>Isopentenyladenosine</term>
<term>RNA, Fungal</term>
<term>RNA, Messenger</term>
<term>RNA, Transfer</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alkyl and Aryl Transferases</term>
<term>Codon</term>
<term>Isopentenyladenosine</term>
<term>RNA, Fungal</term>
<term>RNA, Messenger</term>
<term>RNA, Transfer</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN de transfert</term>
<term>ARN fongique</term>
<term>ARN messager</term>
<term>Alkyl et aryl transferases</term>
<term>Codon</term>
<term>Isopentényladénosine</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN de transfert</term>
<term>ARN fongique</term>
<term>ARN messager</term>
<term>Alkyl et aryl transferases</term>
<term>Codon</term>
<term>Isopentényladénosine</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Deletion</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Protein Biosynthesis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biosynthèse des protéines</term>
<term>Délétion de gène</term>
<term>Régulation de l'expression des gènes fongiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">tRNA isopentenyltransferases (Tit1) modify tRNA position 37, adjacent to the anticodon, to N6-isopentenyladenosine (i6A37) in all cells, yet the tRNA subsets selected for modification vary among species, and their relevance to phenotypes is unknown. We examined the function of i6A37 in Schizosaccharomyces pombe tit1+ and tit1-Δ cells by using a β-galactosidase codon-swap reporter whose catalytic activity is sensitive to accurate decoding of codon 503. i6A37 increased the activity of tRNACys at a cognate codon and that of tRNATyr at a near-cognate codon, suggesting that i6A37 promotes decoding activity generally and increases fidelity at cognate codons while decreasing fidelity at noncognate codons. S. pombe cells lacking tit1+ exhibit slow growth in glycerol or rapamycin. While existing data link wobble base U34 modifications to translation of functionally related mRNAs, whether this might extend to the anticodon-adjacent position 37 was unknown. Indeed, we found a biased presence of i6A37-cognate codons in high-abundance mRNAs for ribosome subunits and energy metabolism, congruent with the observed phenotypes and the idea that i6A37 promotes translational efficiency. Polysome profiles confirmed the decreased translational efficiency of mRNAs in tit1-Δ cells. Because subsets of i6A37-tRNAs differ among species, as do their cognate codon-sensitive mRNAs, these genomic variables may underlie associated phenotypic differences.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23716598</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>09</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5549</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>33</Volume>
<Issue>15</Issue>
<PubDate>
<Year>2013</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Lack of tRNA modification isopentenyl-A37 alters mRNA decoding and causes metabolic deficiencies in fission yeast.</ArticleTitle>
<Pagination>
<MedlinePgn>2918-29</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/MCB.00278-13</ELocationID>
<Abstract>
<AbstractText>tRNA isopentenyltransferases (Tit1) modify tRNA position 37, adjacent to the anticodon, to N6-isopentenyladenosine (i6A37) in all cells, yet the tRNA subsets selected for modification vary among species, and their relevance to phenotypes is unknown. We examined the function of i6A37 in Schizosaccharomyces pombe tit1+ and tit1-Δ cells by using a β-galactosidase codon-swap reporter whose catalytic activity is sensitive to accurate decoding of codon 503. i6A37 increased the activity of tRNACys at a cognate codon and that of tRNATyr at a near-cognate codon, suggesting that i6A37 promotes decoding activity generally and increases fidelity at cognate codons while decreasing fidelity at noncognate codons. S. pombe cells lacking tit1+ exhibit slow growth in glycerol or rapamycin. While existing data link wobble base U34 modifications to translation of functionally related mRNAs, whether this might extend to the anticodon-adjacent position 37 was unknown. Indeed, we found a biased presence of i6A37-cognate codons in high-abundance mRNAs for ribosome subunits and energy metabolism, congruent with the observed phenotypes and the idea that i6A37 promotes translational efficiency. Polysome profiles confirmed the decreased translational efficiency of mRNAs in tit1-Δ cells. Because subsets of i6A37-tRNAs differ among species, as do their cognate codon-sensitive mRNAs, these genomic variables may underlie associated phenotypic differences.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lamichhane</LastName>
<ForeName>Tek N</ForeName>
<Initials>TN</Initials>
<AffiliationInfo>
<Affiliation>Intramural Research Program, NICHD, NIH, Bethesda, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Blewett</LastName>
<ForeName>Nathan H</ForeName>
<Initials>NH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Crawford</LastName>
<ForeName>Amanda K</ForeName>
<Initials>AK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cherkasova</LastName>
<ForeName>Vera A</ForeName>
<Initials>VA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Iben</LastName>
<ForeName>James R</ForeName>
<Initials>JR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Begley</LastName>
<ForeName>Thomas J</ForeName>
<Initials>TJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Farabaugh</LastName>
<ForeName>Philip J</ForeName>
<Initials>PJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Maraia</LastName>
<ForeName>Richard J</ForeName>
<Initials>RJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 ES017010</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>1R01ES017010</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<Agency>Intramural NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D052060">Research Support, N.I.H., Intramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>05</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003062">Codon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012331">RNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7724-76-7</RegistryNumber>
<NameOfSubstance UI="D007541">Isopentenyladenosine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9014-25-9</RegistryNumber>
<NameOfSubstance UI="D012343">RNA, Transfer</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.-</RegistryNumber>
<NameOfSubstance UI="D019883">Alkyl and Aryl Transferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.75</RegistryNumber>
<NameOfSubstance UI="C023197">tRNA isopentenyltransferase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Mol Cell Biol. 2015 Apr;35(8):1477</RefSource>
<PMID Version="1">25805774</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019883" MajorTopicYN="N">Alkyl and Aryl Transferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003062" MajorTopicYN="N">Codon</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="Y">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007541" MajorTopicYN="N">Isopentenyladenosine</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014176" MajorTopicYN="N">Protein Biosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012331" MajorTopicYN="N">RNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012343" MajorTopicYN="N">RNA, Transfer</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>9</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23716598</ArticleId>
<ArticleId IdType="pii">MCB.00278-13</ArticleId>
<ArticleId IdType="doi">10.1128/MCB.00278-13</ArticleId>
<ArticleId IdType="pmc">PMC3719670</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 2005 Jan;25(2):621-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15632064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Feb;169(2):539-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2005 Aug 18;24(35):5502-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15870694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2005 Sep;12(9):788-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Sep 7;443(7107):41-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16906138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2007 Jan;13(1):87-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17095544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Feb 9;366(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17187822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Cancer. 2007 Jun 15;120(12):2744-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17304507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(4):953-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jun 1;316(5829):1341-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17463248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Dec 14;28(5):860-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18082610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2008 Jul;9(7):629-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18552770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D93-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18984615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jan 15;25(2):288-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19033274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2009 Nov;8(11):1616-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19717745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2010 Mar 1;123(Pt 5):777-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20144990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2010 May;17(5):555-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20400952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2010 Sep;16(9):1797-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20651030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2010 Sep 1;24(17):1832-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20810645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2010 Dec;8(12):849-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21079633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2011 Feb;31(3):542-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21098120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2011 Sep;121(9):3598-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21841312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2011 Oct;17(10):1846-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21873461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2011 Dec 27;366(1584):3508-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22084378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):131-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22190491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2012 Feb;23(3):480-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22160596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2012 Jul;18(7):1358-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22586155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2012;3:937</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22760636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2012 Aug;17(8):698-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22762302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2012 May 31;1(5):424-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22768388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Oct 26;151(3):671-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23101633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2013 Feb;9(2):105-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23242255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 Dec 1;125(Pt 23):5840-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22976295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 May 30;39(21):6546-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10828971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2000 Aug;6(2):339-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10983981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Sep;159(1):147-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11560893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2002 Dec;42(3):147-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12491008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2003 Dec 15;116(Pt 24):4883-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14625382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2004 May;3(5):648-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15107621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2004 Jun;4(6):1581-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15174128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1969 Feb;62(2):468-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5256225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1969 Jan 14;39(1):145-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4938812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1978 Nov;5(11):4329-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">364426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1980 May 15;139(2):207-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7411631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1980 Nov;96(3):627-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7262540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1982 Mar 25;257(6):3026-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7037777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1982 Nov 12;218(4573):646-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6753149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1983 Sep;80(17):5198-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6310564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1984 Mar 10;259(5):2845-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6230353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1986 Jun;166(3):1013-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2423501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1986 Jun;166(3):1022-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3086285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1987 Jan;7(1):177-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3031456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1987 Jul;208(3):373-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3312947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1988 May 16;152(3):1050-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3132151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1990 Dec;283(2):342-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2125820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 May;11(5):2382-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1850093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Jun;11(6):3203-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2038326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1991 Dec 20;222(4):1161-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1762149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Apr;177(8):1967-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7536729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biochim Pol. 1994;41(4):441-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7732762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 1994;76(12):1152-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7748950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1995 Aug;11(4):441-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8521054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Dec;15(12):6884-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8524255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 1997 Jul;3(7):721-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9214656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Oct;179(20):6325-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9335279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Nov 20;284(1):33-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9811540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Jan;151(1):57-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9872948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Cell Biol. 1999;77(3):229-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10505794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Dec 2;432(7017):557</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15577889</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Begley, Thomas J" sort="Begley, Thomas J" uniqKey="Begley T" first="Thomas J" last="Begley">Thomas J. Begley</name>
<name sortKey="Blewett, Nathan H" sort="Blewett, Nathan H" uniqKey="Blewett N" first="Nathan H" last="Blewett">Nathan H. Blewett</name>
<name sortKey="Cherkasova, Vera A" sort="Cherkasova, Vera A" uniqKey="Cherkasova V" first="Vera A" last="Cherkasova">Vera A. Cherkasova</name>
<name sortKey="Crawford, Amanda K" sort="Crawford, Amanda K" uniqKey="Crawford A" first="Amanda K" last="Crawford">Amanda K. Crawford</name>
<name sortKey="Farabaugh, Philip J" sort="Farabaugh, Philip J" uniqKey="Farabaugh P" first="Philip J" last="Farabaugh">Philip J. Farabaugh</name>
<name sortKey="Iben, James R" sort="Iben, James R" uniqKey="Iben J" first="James R" last="Iben">James R. Iben</name>
<name sortKey="Maraia, Richard J" sort="Maraia, Richard J" uniqKey="Maraia R" first="Richard J" last="Maraia">Richard J. Maraia</name>
</noCountry>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Lamichhane, Tek N" sort="Lamichhane, Tek N" uniqKey="Lamichhane T" first="Tek N" last="Lamichhane">Tek N. Lamichhane</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001022 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001022 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23716598
   |texte=   Lack of tRNA modification isopentenyl-A37 alters mRNA decoding and causes metabolic deficiencies in fission yeast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23716598" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020